Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Static and Dynamic Vector Semantics for Lambda Calculus Models of Natural Language (1810.11351v1)

Published 26 Oct 2018 in cs.CL

Abstract: Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, the degree of co-occurrence of words in context determines how similar the meanings of words are. In this paper, we put these two models together and develop a vector semantics for language based on the simply typed lambda calculus models of natural language. We provide two types of vector semantics: a static one that uses techniques familiar from the truth conditional tradition and a dynamic one based on a form of dynamic interpretation inspired by Heim's context change potentials. We show how the dynamic model can be applied to entailment between a corpus and a sentence and we provide examples.

Citations (11)

Summary

We haven't generated a summary for this paper yet.