Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the solution uniqueness in portfolio optimization and risk analysis (1810.11299v3)

Published 26 Oct 2018 in q-fin.PM and q-fin.MF

Abstract: We consider the issue of solution uniqueness for portfolio optimization problem and its inverse for asset returns with a finite number of possible scenarios. The risk is assessed by deviation measures introduced by [Rockafellar et al., Mathematical Programming, Ser. B, 108 (2006), pp. 515-540] instead of variance as in the Markowitz optimization problem. We prove that in general one can expect uniqueness neither in forward nor in inverse problems. We discuss consequences of that non-uniqueness for several problems in risk analysis and portfolio optimization, including capital allocation, risk sharing, cooperative investment, and the Black-Litterman methodology. In all cases, the issue with non-uniqueness is closely related to the fact that subgradient of a convex function is non-unique at the points of non-differentiability. We suggest methodology to resolve this issue by identifying a unique "special" subgradient satisfying some natural axioms. This "special" subgradient happens to be the Stainer point of the subdifferential set.

Summary

We haven't generated a summary for this paper yet.