Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Size-Noise Tradeoffs in Generative Networks (1810.11158v1)

Published 26 Oct 2018 in cs.LG and stat.ML

Abstract: This paper investigates the ability of generative networks to convert their input noise distributions into other distributions. Firstly, we demonstrate a construction that allows ReLU networks to increase the dimensionality of their noise distribution by implementing a "space-filling" function based on iterated tent maps. We show this construction is optimal by analyzing the number of affine pieces in functions computed by multivariate ReLU networks. Secondly, we provide efficient ways (using polylog $(1/\epsilon)$ nodes) for networks to pass between univariate uniform and normal distributions, using a Taylor series approximation and a binary search gadget for computing function inverses. Lastly, we indicate how high dimensional distributions can be efficiently transformed into low dimensional distributions.

Citations (19)

Summary

We haven't generated a summary for this paper yet.