Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Towards improved lossy image compression: Human image reconstruction with public-domain images (1810.11137v3)

Published 25 Oct 2018 in eess.IV, cs.CV, cs.IT, cs.MM, and math.IT

Abstract: Lossy image compression has been studied extensively in the context of typical loss functions such as RMSE, MS-SSIM, etc. However, compression at low bitrates generally produces unsatisfying results. Furthermore, the availability of massive public image datasets appears to have hardly been exploited in image compression. Here, we present a paradigm for eliciting human image reconstruction in order to perform lossy image compression. In this paradigm, one human describes images to a second human, whose task is to reconstruct the target image using publicly available images and text instructions. The resulting reconstructions are then evaluated by human raters on the Amazon Mechanical Turk platform and compared to reconstructions obtained using state-of-the-art compressor WebP. Our results suggest that prioritizing semantic visual elements may be key to achieving significant improvements in image compression, and that our paradigm can be used to develop a more human-centric loss function. The images, results and additional data are available at https://compression.stanford.edu/human-compression

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.