Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Route Efficiently with End-to-End Feedback: The Value of Networked Structure (1810.10637v2)

Published 24 Oct 2018 in cs.LG and stat.ML

Abstract: We introduce efficient algorithms which achieve nearly optimal regrets for the problem of stochastic online shortest path routing with end-to-end feedback. The setting is a natural application of the combinatorial stochastic bandits problem, a special case of the linear stochastic bandits problem. We show how the difficulties posed by the large scale action set can be overcome by the networked structure of the action set. Our approach presents a novel connection between bandit learning and shortest path algorithms. Our main contribution is an adaptive exploration algorithm with nearly optimal instance-dependent regret for any directed acyclic network. We then modify it so that nearly optimal worst case regret is achieved simultaneously. Driven by the carefully designed Top-Two Comparison (TTC) technique, the algorithms are efficiently implementable. We further conduct extensive numerical experiments to show that our proposed algorithms not only achieve superior regret performances, but also reduce the runtime drastically.

Citations (4)

Summary

We haven't generated a summary for this paper yet.