Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clinical Concept Extraction with Contextual Word Embedding (1810.10566v2)

Published 24 Oct 2018 in cs.CL

Abstract: Automatic extraction of clinical concepts is an essential step for turning the unstructured data within a clinical note into structured and actionable information. In this work, we propose a clinical concept extraction model for automatic annotation of clinical problems, treatments, and tests in clinical notes utilizing domain-specific contextual word embedding. A contextual word embedding model is first trained on a corpus with a mixture of clinical reports and relevant Wikipedia pages in the clinical domain. Next, a bidirectional LSTM-CRF model is trained for clinical concept extraction using the contextual word embedding model. We tested our proposed model on the I2B2 2010 challenge dataset. Our proposed model achieved the best performance among reported baseline models and outperformed the state-of-the-art models by 3.4% in terms of F1-score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Henghui Zhu (24 papers)
  2. Ioannis Ch. Paschalidis (66 papers)
  3. Amir Tahmasebi (5 papers)
Citations (75)