Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational complexity, Newton polytopes, and Schubert polynomials (1810.10361v2)

Published 24 Oct 2018 in math.CO and cs.CC

Abstract: The nonvanishing problem asks if a coefficient of a polynomial is nonzero. Many families of polynomials in algebraic combinatorics admit combinatorial counting rules and simultaneously enjoy having saturated Newton polytopes (SNP). Thereby, in amenable cases, nonvanishing is in the complexity class $NP\cap coNP$ of problems with "good characterizations". This suggests a new algebraic combinatorics viewpoint on complexity theory. This report discusses the case of Schubert polynomials. These form a basis of all polynomials and appear in the study of cohomology rings of flag manifolds. We give a tableau criterion for nonvanishing, from which we deduce the first polynomial time algorithm. These results are obtained from new characterizations of the Schubitope, a generalization of the permutahedron defined for any subset of the n x n grid, together with a theorem of A. Fink, K. M\'{e}sz\'{a}ros, and A. St. Dizier, which proved a conjecture of C. Monical, N. Tokcan, and the third author.

Citations (9)

Summary

We haven't generated a summary for this paper yet.