Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Identification of Indicators of Compromise using Neural-Based Sequence Labelling (1810.10156v1)

Published 24 Oct 2018 in cs.AI and cs.CR

Abstract: Indicators of Compromise (IOCs) are artifacts observed on a network or in an operating system that can be utilized to indicate a computer intrusion and detect cyber-attacks in an early stage. Thus, they exert an important role in the field of cybersecurity. However, state-of-the-art IOCs detection systems rely heavily on hand-crafted features with expert knowledge of cybersecurity, and require a large amount of supervised training corpora to train an IOC classifier. In this paper, we propose using a neural-based sequence labelling model to identify IOCs automatically from reports on cybersecurity without expert knowledge of cybersecurity. Our work is the first to apply an end-to-end sequence labelling to the task in IOCs identification. By using an attention mechanism and several token spelling features, we find that the proposed model is capable of identifying the low frequency IOCs from long sentences contained in cybersecurity reports. Experiments show that the proposed model outperforms other sequence labelling models, achieving over 88% average F1-score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shengping Zhou (3 papers)
  2. Zi Long (9 papers)
  3. Lianzhi Tan (2 papers)
  4. Hao Guo (172 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.