Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Transaction Transmission and Channel Selection in Cognitive Radio Based Blockchain Networks: A Deep Reinforcement Learning Approach (1810.10139v1)

Published 24 Oct 2018 in cs.NI

Abstract: To ensure that the data aggregation, data storage, and data processing are all performed in a decentralized but trusted manner, we propose to use the blockchain with the mining pool to support IoT services based on cognitive radio networks. As such, the secondary user can send its sensing data, i.e., transactions, to the mining pools. After being verified by miners, the transactions are added to the blocks. However, under the dynamics of the primary channel and the uncertainty of the mempool state of the mining pool, it is challenging for the secondary user to determine an optimal transaction transmission policy. In this paper, we propose to use the deep reinforcement learning algorithm to derive an optimal transaction transmission policy for the secondary user. Specifically, we adopt a Double Deep-Q Network (DDQN) that allows the secondary user to learn the optimal policy. The simulation results clearly show that the proposed deep reinforcement learning algorithm outperforms the conventional Q-learning scheme in terms of reward and learning speed.

Citations (22)

Summary

We haven't generated a summary for this paper yet.