Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reproducing AmbientGAN: Generative models from lossy measurements (1810.10108v1)

Published 23 Oct 2018 in eess.SP and cs.LG

Abstract: In recent years, Generative Adversarial Networks (GANs) have shown substantial progress in modeling complex distributions of data. These networks have received tremendous attention since they can generate implicit probabilistic models that produce realistic data using a stochastic procedure. While such models have proven highly effective in diverse scenarios, they require a large set of fully-observed training samples. In many applications access to such samples are difficult or even impractical and only noisy or partial observations of the desired distribution is available. Recent research has tried to address the problem of incompletely observed samples to recover the distribution of the data. \citep{zhu2017unpaired} and \citep{yeh2016semantic} proposed methods to solve ill-posed inverse problem using cycle-consistency and latent-space mappings in adversarial networks, respectively. \citep{bora2017compressed} and \citep{kabkab2018task} have applied similar adversarial approaches to the problem of compressed sensing. In this work, we focus on a new variant of GAN models called AmbientGAN, which incorporates a measurement process (e.g. adding noise, data removal and projection) into the GAN training. While in the standard GAN, the discriminator distinguishes a generated image from a real image, in AmbientGAN model the discriminator has to separate a real measurement from a simulated measurement of a generated image. The results shown by \citep{bora2018ambientgan} are quite promising for the problem of incomplete data, and have potentially important implications for generative approaches to compressed sensing and ill-posed problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.