Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On orthogonal symmetric chain decompositions (1810.09847v2)

Published 23 Oct 2018 in math.CO and cs.DM

Abstract: The $n$-cube is the poset obtained by ordering all subsets of ${1,\ldots,n}$ by inclusion, and it can be partitioned into $\binom{n}{\lfloor n/2\rfloor}$ chains, which is the minimum possible number. Two such decompositions of the $n$-cube are called orthogonal if any two chains of the decompositions share at most a single element. Shearer and Kleitman conjectured in 1979 that the $n$-cube has $\lfloor n/2\rfloor+1$ pairwise orthogonal decompositions into the minimum number of chains, and they constructed two such decompositions. Spink recently improved this by showing that the $n$-cube has three pairwise orthogonal chain decompositions for $n\geq 24$. In this paper, we construct four pairwise orthogonal chain decompositions of the $n$-cube for $n\geq 60$. We also construct five pairwise edge-disjoint chain decompositions of the $n$-cube for $n\geq 90$, where edge-disjointness is a slightly weaker notion than orthogonality.

Citations (7)

Summary

We haven't generated a summary for this paper yet.