Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SwitchNet: a neural network model for forward and inverse scattering problems (1810.09675v1)

Published 23 Oct 2018 in math.NA and cs.LG

Abstract: We propose a novel neural network architecture, SwitchNet, for solving the wave equation based inverse scattering problems via providing maps between the scatterers and the scattered field (and vice versa). The main difficulty of using a neural network for this problem is that a scatterer has a global impact on the scattered wave field, rendering typical convolutional neural network with local connections inapplicable. While it is possible to deal with such a problem using a fully connected network, the number of parameters grows quadratically with the size of the input and output data. By leveraging the inherent low-rank structure of the scattering problems and introducing a novel switching layer with sparse connections, the SwitchNet architecture uses much fewer parameters and facilitates the training process. Numerical experiments show promising accuracy in learning the forward and inverse maps between the scatterers and the scattered wave field.

Citations (123)

Summary

We haven't generated a summary for this paper yet.