Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties of an N Time-Slice Dynamic Chain Event Graph (1810.09414v1)

Published 22 Oct 2018 in stat.ML and cs.LG

Abstract: A Dynamic Chain Event Graph (DCEG) provides a rich tree-based framework for modelling a dynamic process with highly asymmetric developments. An N Time-Slice DCEG (NT-DCEG) is a useful subclass of the DCEG class that exhibits a specific type of periodicity in its supporting tree graph and embodies a time-homogeneity assumption. Here some desired properties of an NT-DCEG is explored. In particular, we prove that the class of NT-DCEGs contains all discrete N time-slice Dynamic Bayesian Networks as special cases. We also develop a method to distributively construct an NT-DCEG model. By exploiting the topology of an NT-DCEG graph, we show how to construct intrinsic random variables which exhibit context-specific independences that can then be checked by domain experts. We also show how an NT-DCEG can be used to depict various structural and Granger causal hypotheses about a given process. Our methods are illustrated throughout using examples of dynamic multivariate processes describing inmate radicalisation in a prison.

Citations (5)

Summary

We haven't generated a summary for this paper yet.