2000 character limit reached
On the Atkin and Swinnerton-Dyer type congruences for some truncated hypergeometric ${}_1F_0$ series (1810.09370v1)
Published 22 Oct 2018 in math.NT and math.CO
Abstract: Let $p$ be an odd prime and let $n$ be a positive integer. For any positive integer $\alpha$ and $m\in{1,2,3}$, we have \begin{align*} \sum_{k=0}{p{\alpha}n-1}\frac{(\frac12)k}{k!}\cdot\frac{(-4)k}{mk}\equiv\bigg(\frac{m(m-4)}{p}\bigg)\sum{k=0}{p{\alpha-1}n-1}\frac{(\frac12)_k}{k!}\cdot\frac{(-4)k}{mk}\pmod{p{2\alpha}}, \end{align*} where $(x)k=x(x+1)\cdots(x+k-1)$ and $\big(\frac{\cdot}{\cdot}\big)$ denotes the Legendre symbol. Also, when $m=4$, \begin{align*} \sum{k=0}{p{\alpha}n-1}(-1)k\cdot\frac{(\frac12)_k}{k!}\equiv p\sum_{k=0}{p{\alpha-1}n-1}(-1)k\cdot\frac{(\frac12)_k}{k!}\pmod{p{2\alpha}}. \end{align*}