Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prime decomposition of modular tensor categories of local modules of Type D (1810.09057v1)

Published 22 Oct 2018 in math.QA

Abstract: Let $\mathcal{C}(\mathfrak{g},k)$ be the unitary modular tensor categories arising from the representation theory of quantum groups at roots of unity for arbitrary simple finite-dimensional complex Lie algebra $\mathfrak{g}$ and positive integer levels $k$. Here we classify nondegenerate fusion subcategories of the modular tensor categories of local modules $\mathcal{C}(\mathfrak{g},k)R0$ where $R$ is the regular algebra of Tannakian $\text{Rep}(H)\subset\mathcal{C}(\mathfrak{g},k)\text{pt}$. For $\mathfrak{g}=\mathfrak{so}5$ we describe the decomposition of $\mathcal{C}(\mathfrak{g},k)_R0$ into prime factors explicitly and as an application we classify relations in the Witt group of nondegenerately braided fusion categories generated by the equivalency classes of $\mathcal{C}(\mathfrak{so}_5,k)$ and $\mathcal{C}(\mathfrak{g}_2,k)$ for $k\in\mathbb{Z}{\geq1}$.

Summary

We haven't generated a summary for this paper yet.