Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Label Noise Filtering Techniques to Improve Monotonic Classification (1810.08914v1)

Published 21 Oct 2018 in cs.AI

Abstract: The monotonic ordinal classification has increased the interest of researchers and practitioners within machine learning community in the last years. In real applications, the problems with monotonicity constraints are very frequent. To construct predictive monotone models from those problems, many classifiers require as input a data set satisfying the monotonicity relationships among all samples. Changing the class labels of the data set (relabelling) is useful for this. Relabelling is assumed to be an important building block for the construction of monotone classifiers and it is proved that it can improve the predictive performance. In this paper, we will address the construction of monotone datasets considering as noise the cases that do not meet the monotonicity restrictions. For the first time in the specialized literature, we propose the use of noise filtering algorithms in a preprocessing stage with a double goal: to increase both the monotonicity index of the models and the accuracy of the predictions for different monotonic classifiers. The experiments are performed over 12 datasets coming from classification and regression problems and show that our scheme improves the prediction capabilities of the monotonic classifiers instead of being applied to original and relabeled datasets. In addition, we have included the analysis of noise filtering process in the particular case of wine quality classification to understand its effect in the predictive models generated.

Citations (17)

Summary

We haven't generated a summary for this paper yet.