Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral exotic sheaves and the modular Lusztig-Vogan bijection (1810.08897v2)

Published 21 Oct 2018 in math.RT

Abstract: Let G be a reductive group over an algebraically closed field k of very good characteristic. The Lusztig-Vogan bijection is a bijection between the set of dominant weights for G and the set of irreducible G-equivariant vector bundles on nilpotent orbits, conjectured by Lusztig and Vogan independently, and constructed in full generality by Bezrukavnikov. In characteristic 0, this bijection is related to the theory of 2-sided cells in the affine Weyl group, and plays a key role in the proof of the Humphreys conjecture on support varieties of tilting modules for quantum groups at a root of unity. In this paper, we prove that the Lusztig-Vogan bijection is (in a way made precise in the body of the paper) independent of the characteristic of k. This allows us to extend all of its known properties from the characteristic-0 setting to the general case. We also expect this result to be a step towards a proof of the Humphreys conjecture on support varieties of tilting modules for reductive groups in positive characteristic.

Summary

We haven't generated a summary for this paper yet.