Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence results for non-local elliptic systems with Hardy-Littlewood-Sobolev critical nonlinearities (1810.08892v1)

Published 21 Oct 2018 in math.AP

Abstract: In this article, we study the following nonlinear doubly nonlocal problem involving the fractional Laplacian in the sense of Hardy-Littlewood-Sobolev inequality \begin{equation*} \left{\begin{aligned} (-\Delta)s u & = au+bv+\frac{2p}{p+q}\int_{\Omega}\frac{|v(y)|q}{|x-y|\mu}dy|u|{p-2}u+2\xi_1\int_{\Omega}\frac{|u(y)|{2_\mu}}{|x-y|\mu}dy|u|{2^_\mu-2}u,&& \text{in } \Omega;\ (-\Delta)s v & = bu+cv+\frac{2q}{p+q}\int_{\Omega}\frac{|u(y)|p}{|x-y|\mu}dy|v|{q-2}v+2\xi_2\int_{\Omega}\frac{|v(y)|{2_\mu}}{|x-y|\mu}dy|v|{2^_\mu-2}v,&& \text{in } \Omega;\ u &=v=0,\text{ in } \RN\setminus\Omega, \end{aligned}\right. \end{equation*} where $\Omega$ is a smooth bounded domain in $\RN$, $N>2s$, $s\in(0,1)$, $\xi_1,\xi_2\geq 0$, $(-\Delta)s$ is the well known fractional Laplacian, $\mu\in(0,N)$, $1<p,q\leq 2*_\mu$ where $2*_\mu=\frac{2N-\mu}{N-2s}$ is the upper critical exponent in the Hardy-Littlewood-Sobolev inequality. Under suitable assumptions on different parameters $p, q, \xi_1,$ and $ \xi_2$, we are able to prove some existence and multiplicity results for the above equation by variational methods.

Summary

We haven't generated a summary for this paper yet.