Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sleep Arousal Detection from Polysomnography using the Scattering Transform and Recurrent Neural Networks (1810.08875v1)

Published 21 Oct 2018 in cs.LG, eess.SP, and stat.ML

Abstract: Sleep disorders are implicated in a growing number of health problems. In this paper, we present a signal-processing/machine learning approach to detecting arousals in the multi-channel polysomnographic recordings of the Physionet/CinC Challenge2018 dataset. Methods: Our network architecture consists of two components. Inputs were presented to a Scattering Transform (ST) representation layer which fed a recurrent neural network for sequence learning using three layers of Long Short-Term Memory (LSTM). The STs were calculated for each signal with downsampling parameters chosen to give approximately 1 s time resolution, resulting in an eighteen-fold data reduction. The LSTM layers then operated at this downsampled rate. Results: The proposed approach detected arousal regions on the 10% random sample of the hidden test set with an AUROC of 88.0% and an AUPRC of 42.1%.

Citations (17)

Summary

We haven't generated a summary for this paper yet.