Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Local density of solutions of time and space fractional equations (1810.08448v1)

Published 19 Oct 2018 in math.AP

Abstract: We prove that any given function can be smoothly approximated by functions lying in the kernel of a linear operator involving at least one fractional component. The setting in which we work is very general, since it takes into account anomalous diffusion, with possible fractional components in both space and time. The operators studied comprise the case of the sum of classical and fractional Laplacians, possibly of different orders, in the space variables, and classical or fractional derivatives in the time variables. This type of approximation results shows that space-fractional and time-fractional equations exhibit a variety of solutions which is much richer and more abundant than in the case of classical diffusion.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.