Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invocation-driven Neural Approximate Computing with a Multiclass-Classifier and Multiple Approximators (1810.08379v1)

Published 19 Oct 2018 in cs.LG and stat.ML

Abstract: Neural approximate computing gains enormous energy-efficiency at the cost of tolerable quality-loss. A neural approximator can map the input data to output while a classifier determines whether the input data are safe to approximate with quality guarantee. However, existing works cannot maximize the invocation of the approximator, resulting in limited speedup and energy saving. By exploring the mapping space of those target functions, in this paper, we observe a nonuniform distribution of the approximation error incurred by the same approximator. We thus propose a novel approximate computing architecture with a Multiclass-Classifier and Multiple Approximators (MCMA). These approximators have identical network topologies and thus can share the same hardware resource in a neural processing unit(NPU) clip. In the runtime, MCMA can swap in the invoked approximator by merely shipping the synapse weights from the on-chip memory to the buffers near MAC within a cycle. We also propose efficient co-training methods for such MCMA architecture. Experimental results show a more substantial invocation of MCMA as well as the gain of energy-efficiency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.