Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Shrinkage Estimation of Covariance Matrices Using Low-Complexity Cross-Validation (1810.08360v1)

Published 19 Oct 2018 in cs.IT and math.IT

Abstract: Shrinkage can effectively improve the condition number and accuracy of covariance matrix estimation, especially for low-sample-support applications with the number of training samples smaller than the dimensionality. This paper investigates parameter choice for linear shrinkage estimators. We propose data-driven, leave-one-out cross-validation (LOOCV) methods for automatically choosing the shrinkage coefficients, aiming to minimize the Frobenius norm of the estimation error. A quadratic loss is used as the prediction error for LOOCV. The resulting solutions can be found analytically or by solving optimization problems of small sizes and thus have low complexities. Our proposed methods are compared with various existing techniques. We show that the LOOCV method achieves near-oracle performance for shrinkage designs using sample covariance matrix (SCM) and several typical shrinkage targets. Furthermore, the LOOCV method provides low-complexity solutions for estimators that use general shrinkage targets, multiple targets, and/or ordinary least squares (OLS)-based covariance matrix estimation. We also show applications of our proposed techniques to several different problems in array signal processing.

Citations (29)

Summary

We haven't generated a summary for this paper yet.