Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the lower bounds of Davenport constant (1810.08346v2)

Published 19 Oct 2018 in math.CO and math.NT

Abstract: Let $G = C_{n_1} \oplus \cdots \oplus C_{n_r}$ with $1 < n_1 | \cdots | n_r$ be a finite abelian group. The Davenport constant $\mathsf D(G)$ is the smallest integer $t$ such that every sequence $S$ over $G$ of length $|S|\ge t$ has a non-empty zero-sum subsequence. It is a starting point of zero-sum theory but only has a trivial lower bound $\mathsf D*(G) = n_1 + \cdots + n_r - r + 1$, which equals $\mathsf D(G)$ over $p$-groups. We investigate the non-dispersive sequences over group $C_nr$, thereby revealing the growth of $\mathsf D(G)-\mathsf D*(G)$ over non-$p$-groups $G = C_nr \oplus C_{kn}$ with $n,k \ne 1$. We give a general lower bound of $\mathsf D(G)$ over non-$p$-groups and show that, let $G$ be abelian groups with $\exp(G)=m$ and rank $r$, fix $m>0$ a non-prime-power, then for each $N>0$ there exists an $\varepsilon>0$ such that if $|G|/mr<\varepsilon $, then $\mathsf D(G)-\mathsf D*(G)>N$.

Summary

We haven't generated a summary for this paper yet.