Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower bounds for fluctuations in first-passage percolation for general distributions (1810.08270v2)

Published 18 Oct 2018 in math.PR

Abstract: In first-passage percolation (FPP), one assigns i.i.d.~weights to the edges of the cubic lattice $\mathbb{Z}d$ and analyzes the induced weighted graph metric. If $T(x,y)$ is the distance between vertices $x$ and $y$, then a primary question in the model is: what is the order of the fluctuations of $T(0,x)$? It is expected that the variance of $T(0,x)$ grows like the norm of $x$ to a power strictly less than 1, but the best lower bounds available are (only in two dimensions) of order $\log |x|$. This result was found in the '90s and there has not been any improvement since. In this paper, we address the problem of getting stronger fluctuation bounds: to show that $T(0,x)$ is with high probability not contained in an interval of size $o(\log |x|){1/2}$, and similar statements for FPP in thin cylinders. Such statements have been proved for special edge-weight distributions, and here we obtain such bounds for general edge-weight distributions. The methods involve inducing a fluctuation in the number of edges in a box whose weights are of "hi-mode" (large).

Summary

We haven't generated a summary for this paper yet.