Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Harmonic Numbers (1810.07877v6)

Published 18 Oct 2018 in math.NT

Abstract: This paper presents new formulae for the harmonic numbers of order $k$, $H_{k}(n)$, and for the partial sums of two Fourier series associated with them, denoted here by $Cm_{k}(n)$ and $Sm_{k}(n)$. I believe this new formula for $H_{k}(n)$ is an improvement over the digamma function, $\psi$, because it's simpler and it stems from Faulhaber's formula, which provides a closed-form for the sum of powers of the first $n$ positive integers. We demonstrate how to create an exact power series for the harmonic numbers, a new integral representation for $\zeta(2k+1)$ and a new generating function for $\zeta(2k+1)$, among many other original results. The approaches and formulae discussed here are entirely different from solutions available in the literature.

Summary

We haven't generated a summary for this paper yet.