Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pruning Deep Neural Networks using Partial Least Squares (1810.07610v3)

Published 17 Oct 2018 in cs.CV

Abstract: Modern pattern recognition methods are based on convolutional networks since they are able to learn complex patterns that benefit the classification. However, convolutional networks are computationally expensive and require a considerable amount of memory, which limits their deployment on low-power and resource-constrained systems. To handle these problems, recent approaches have proposed pruning strategies that find and remove unimportant neurons (i.e., filters) in these networks. Despite achieving remarkable results, existing pruning approaches are ineffective since the accuracy of the original network is degraded. In this work, we propose a novel approach to efficiently remove filters from convolutional networks. Our approach estimates the filter importance based on its relationship with the class label on a low-dimensional space. This relationship is computed using Partial Least Squares (PLS) and Variable Importance in Projection (VIP). Our method is able to reduce up to 67% of the floating point operations (FLOPs) without penalizing the network accuracy. With a negligible drop in accuracy, we can reduce up to 90% of FLOPs. Additionally, sometimes the method is even able to improve the accuracy compared to original, unpruned, network. We show that employing PLS+VIP as the criterion for detecting the filters to be removed is better than recent feature selection techniques, which have been employed by state-of-the-art pruning methods. Finally, we show that the proposed method achieves the highest FLOPs reduction and the smallest drop in accuracy when compared to state-of-the-art pruning approaches. Codes are available at: https://github.com/arturjordao/PruningNeuralNetworks

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Artur Jordao (13 papers)
  2. Ricardo Kloss (2 papers)
  3. Fernando Yamada (1 paper)
  4. William Robson Schwartz (28 papers)
Citations (9)