Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measures of path-based nonlinear expansion rates and Lagrangian uncertainty in stochastic flows (1810.07567v2)

Published 17 Oct 2018 in math.DS, cs.IT, math.IT, and math.PR

Abstract: We develop a probabilistic characterisation of trajectorial expansion rates in non-autonomous stochastic dynamical systems that can be defined over a finite time interval and used for the subsequent uncertainty quantification in Lagrangian (trajectory-based) predictions. These expansion rates are quantified via certain divergences (pre-metrics) between probability measures induced by the laws of the stochastic flow associated with the underlying dynamics. We construct scalar fields of finite-time divergence/expansion rates, show their existence and space-time continuity for general stochastic flows. Combining these divergence rate fields with our 'information inequalities' derived in allows for quantification and mitigation of the uncertainty in path-based observables estimated from simplified models in a way that is amenable to algorithmic implementations, and it can be utilised in information-geometric analysis of statistical estimation and inference, as well as in a data-driven machine/deep learning of coarse-grained models. We also derive a link between the divergence rates and finite-time Lyapunov exponents for probability measures and for path-based observables.

Summary

We haven't generated a summary for this paper yet.