Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved return level estimation via a weighted likelihood, latent spatial extremes model (1810.07318v2)

Published 16 Oct 2018 in stat.AP

Abstract: Uncertainty in return level estimates for rare events, like the intensity of large rainfall events, makes it difficult to develop strategies to mitigate related hazards, like flooding. Latent spatial extremes models reduce uncertainty by exploiting spatial dependence in statistical characteristics of extreme events to borrow strength across locations. However, these estimates can have poor properties due to model misspecification: many latent spatial extremes models do not account for extremal dependence, which is spatial dependence in the extreme events themselves. We improve estimates from latent spatial extremes models that make conditional independence assumptions by proposing a weighted likelihood that uses the extremal coefficient to incorporate information about extremal dependence during estimation. This approach differs from, and is simpler than, directly modeling the spatial extremal dependence; for example, by fitting a max-stable process, which is challenging to fit to real, large datasets. We adopt a hierarchical Bayesian framework for inference, use simulation to show the weighted model provides improved estimates of high quantiles, and apply our model to improve return level estimates for Colorado rainfall events with 1% annual exceedance probability.

Citations (5)

Summary

We haven't generated a summary for this paper yet.