Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The module embedding theorem via towers of algebras (1810.07049v1)

Published 16 Oct 2018 in math.OA, math.CT, and math.QA

Abstract: Jones and Penneys showed that a finite depth subfactor planar algebra embeds in the bipartite graph planar algebra of its principal graph, via a Markov towers of algebras approach. We relate several equivalent perspectives on the notion of module over a subfactor planar algebra, and show that a Markov tower is equivalent to a module over the Temperley-Lieb-Jones planar algebra. As a corollary, we obtain a classification of semisimple pivotal C* modules over Temperley-Lieb-Jones in terms of pointed graphs with a Frobenius-Perron vertex weighting. We then generalize the Markov towers of algebras approach to show that a finite depth subfactor planar algebra embeds in the bipartite graph planar algebra of the fusion graph of any of its cyclic modules.

Summary

We haven't generated a summary for this paper yet.