Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bregman Divergence Bounds and Universality Properties of the Logarithmic Loss

Published 14 Oct 2018 in cs.IT and math.IT | (1810.07014v2)

Abstract: A loss function measures the discrepancy between the true values and their estimated fits, for a given instance of data. In classification problems, a loss function is said to be proper if a minimizer of the expected loss is the true underlying probability. We show that for binary classification, the divergence associated with smooth, proper, and convex loss functions is upper bounded by the Kullback-Leibler (KL) divergence, to within a normalization constant. This implies that by minimizing the logarithmic loss associated with the KL divergence, we minimize an upper bound to any choice of loss from this set. As such the logarithmic loss is universal in the sense of providing performance guarantees with respect to a broad class of accuracy measures. Importantly, this notion of universality is not problem-specific, enabling its use in diverse applications, including predictive modeling, data clustering and sample complexity analysis. Generalizations to arbitrary finite alphabets are also developed. The derived inequalities extend several well-known $f$-divergence results.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.