Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding a boundary between valid and invalid regions of the input space (1810.06720v1)

Published 15 Oct 2018 in cs.SE

Abstract: In the context of robustness testing, the boundary between the valid and invalid regions of the input space can be an interesting source of erroneous inputs. Knowing where a specific software under test (SUT) has a boundary is essential for validation in relation to requirements. However, finding where a SUT actually implements the boundary is a non-trivial problem that has not gotten much attention. This paper proposes a method of finding the boundary between the valid and invalid regions of the input space. The proposed method consists of two steps. First, test data generators, directed by a search algorithm to maximise distance to known, valid test cases, generate valid test cases that are closer to the boundary. Second, these valid test cases undergo mutations to try to push them over the boundary and into the invalid part of the input space. This results in a pair of test sets, one consisting of test cases on the valid side of the boundary and a matched set on the outer side, with only a small distance between the two sets. The method is evaluated on a number of examples from the standard library of a modern programming language. We propose a method of determining the boundary between valid and invalid regions of the input space and apply it on a SUT that has a non-contiguous valid region of the input space. From the small distance between the developed pairs of test sets, and the fact that one test set contains valid test cases and the other invalid test cases, we conclude that the pair of test sets described the boundary between the valid and invalid regions of that input space. Differences of behaviour can be observed between different distances and sets of mutation operators, but all show that the method is able to identify the boundary between the valid and invalid regions of the input space. This is an important step towards more automated robustness testing.

Citations (4)

Summary

We haven't generated a summary for this paper yet.