Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted mixed weak-type inequalities for multilinear fractional operators (1810.06680v1)

Published 15 Oct 2018 in math.CA

Abstract: The aim of this paper is to obtain mixed weak-type inequalities for multilinear fractional operators, extending results by F. Berra, M. Carena and G. Pradolini \cite{BCP}. We prove that, under certain conditions on the weights, there exists a constant $C$ such that $$\Bigg| \frac{\mathcal G_{\alpha}(\vec f \,)}{v}\Bigg|{L{q, \infty}(\nu vq)} \leq C \ \prod{i=1}m{|f_i|_{L1(u_i)}},$$ where $\mathcal G_{\alpha}(\vec f \,)$ is the multilinear maximal function $\mathcal M_{\alpha}(\vec f\,)$ that was introduced by K. Moen in \cite{M} or the multilineal fractional integral $\mathcal I_{\alpha}(\vec f \,)$. As an application a vector-valued weighted mixed inequality for $\mathcal I_{\alpha}(\vec f \,)$ will be provided as well.

Summary

We haven't generated a summary for this paper yet.