Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Named-Entity Linking Using Deep Learning For Legal Documents: A Transfer Learning Approach (1810.06673v1)

Published 15 Oct 2018 in cs.LG, cs.AI, cs.CL, and stat.ML

Abstract: In the legal domain it is important to differentiate between words in general, and afterwards to link the occurrences of the same entities. The topic to solve these challenges is called Named-Entity Linking (NEL). Current supervised neural networks designed for NEL use publicly available datasets for training and testing. However, this paper focuses especially on the aspect of applying transfer learning approach using networks trained for NEL to legal documents. Experiments show consistent improvement in the legal datasets that were created from the European Union law in the scope of this research. Using transfer learning approach, we reached F1-score of 98.90\% and 98.01\% on the legal small and large test dataset.

Citations (3)

Summary

We haven't generated a summary for this paper yet.