Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Instance Transfer based Approach Using Enhanced Recurrent Neural Network for Domain Named Entity Recognition (1810.06644v1)

Published 9 Oct 2018 in cs.CL and cs.LG

Abstract: Recently, neural networks have shown promising results for named entity recognition (NER), which needs a number of labeled data to for model training. When meeting a new domain (target domain) for NER, there is no or a few labeled data, which makes domain NER much more difficult. As NER has been researched for a long time, some similar domain already has well labelled data (source domain). Therefore, in this paper, we focus on domain NER by studying how to utilize the labelled data from such similar source domain for the new target domain. We design a kernel function based instance transfer strategy by getting similar labelled sentences from a source domain. Moreover, we propose an enhanced recurrent neural network (ERNN) by adding an additional layer that combines the source domain labelled data into traditional RNN structure. Comprehensive experiments are conducted on two datasets. The comparison results among HMM, CRF and RNN show that RNN performs bette than others. When there is no labelled data in domain target, compared to directly using the source domain labelled data without selecting transferred instances, our enhanced RNN approach gets improvement from 0.8052 to 0.9328 in terms of F1 measure.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lin Li (329 papers)
  2. Yueqing Sun (3 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.