Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisit Batch Normalization: New Understanding from an Optimization View and a Refinement via Composition Optimization (1810.06177v1)

Published 15 Oct 2018 in math.OC and cs.LG

Abstract: Batch Normalization (BN) has been used extensively in deep learning to achieve faster training process and better resulting models. However, whether BN works strongly depends on how the batches are constructed during training and it may not converge to a desired solution if the statistics on a batch are not close to the statistics over the whole dataset. In this paper, we try to understand BN from an optimization perspective by formulating the optimization problem which motivates BN. We show when BN works and when BN does not work by analyzing the optimization problem. We then propose a refinement of BN based on compositional optimization techniques called Full Normalization (FN) to alleviate the issues of BN when the batches are not constructed ideally. We provide convergence analysis for FN and empirically study its effectiveness to refine BN.

Citations (6)

Summary

We haven't generated a summary for this paper yet.