Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison-Based Convolutional Neural Networks for Cervical Cell/Clumps Detection in the Limited Data Scenario (1810.05952v5)

Published 14 Oct 2018 in cs.CV

Abstract: Automated detection of cervical cancer cells or cell clumps has the potential to significantly reduce error rate and increase productivity in cervical cancer screening. However, most traditional methods rely on the success of accurate cell segmentation and discriminative hand-crafted features extraction. Recently there are emerging deep learning-based methods which train convolutional neural networks (CNN) to classify image patches, but they are computationally expensive. In this paper we propose an efficient CNN-based object detection methods for cervical cancer cells/clumps detection. Specifically, we utilize the state-of-the-art two-stage object detection method, the Faster-RCNN with Feature Pyramid Network (FPN) as the baseline and propose a novel comparison detector to deal with the limited data problem. The key idea is that classify the proposals by comparing with the reference samples of each category in object detection. In addition, we propose to learn the reference samples of the background from data instead of manually choosing them by some heuristic rules. Experimental results show that the proposed Comparison Detector yields significant improvement on the small dataset, achieving a mean Average Precision (mAP) of 26.3% and an Average Recall (AR) of 35.7%, both improving about 20 points compared to the baseline. Moreover, Comparison Detector improved AR by 4.6 points and achieved marginally better performance in terms of mAP compared with baseline model when training on the medium dataset. Our method is promising for the development of automation-assisted cervical cancer screening systems. Code is available at https://github.com/kuku-sichuan/ComparisonDetector.

Citations (11)

Summary

We haven't generated a summary for this paper yet.