Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resource Allocation in Wireless Powered IoT Networks (1810.05891v4)

Published 13 Oct 2018 in cs.IT and math.IT

Abstract: In this paper, efficient resource allocation for the uplink transmission of wireless powered IoT networks is investigated. We adopt LoRa technology as an example in the IoT network, but this work is still suitable for other communication technologies. Allocating limited resources, like spectrum and energy resources, among a massive number of users faces critical challenges. We consider grouping wireless powered IoT users into available channels first and then investigate power allocation for users grouped in the same channel to improve the network throughput. Specifically, the user grouping problem is formulated as a many to one matching game. It is achieved by considering IoT users and channels as selfish players which belong to two disjoint sets. Both selfish players focus on maximizing their own utilities. Then we propose an efficient channel allocation algorithm (ECAA) with low complexity for user grouping. Additionally, a Markov Decision Process (MDP) is used to model unpredictable energy arrival and channel conditions uncertainty at each user, and a power allocation algorithm is proposed to maximize the accumulative network throughput over a finite-horizon of time slots. By doing so, we can distribute the channel access and dynamic power allocation local to IoT users. Numerical results demonstrate that our proposed ECAA algorithm achieves near-optimal performance and is superior to random channel assignment, but has much lower computational complexity. Moreover, simulations show that the distributed power allocation policy for each user is obtained with better performance than a centralized offline scheme.

Citations (53)

Summary

We haven't generated a summary for this paper yet.