Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Learning of Movement Prediction in Dynamic Environments using LSTM Autoencoder (1810.05394v1)

Published 12 Oct 2018 in cs.LG, cs.CV, cs.RO, and stat.ML

Abstract: Predicting movement of objects while the action of learning agent interacts with the dynamics of the scene still remains a key challenge in robotics. We propose a multi-layer Long Short Term Memory (LSTM) autoendocer network that predicts future frames for a robot navigating in a dynamic environment with moving obstacles. The autoencoder network is composed of a state and action conditioned decoder network that reconstructs the future frames of video, conditioned on the action taken by the agent. The input image frames are first transformed into low dimensional feature vectors with a pre-trained encoder network and then reconstructed with the LSTM autoencoder network to generate the future frames. A virtual environment, based on the OpenAi-Gym framework for robotics, is used to gather training data and test the proposed network. The initial experiments show promising results indicating that these predicted frames can be used by an appropriate reinforcement learning framework in future to navigate around dynamic obstacles.

Citations (4)

Summary

We haven't generated a summary for this paper yet.