2000 character limit reached
The restricted sumsets in $\mathbb{Z}_n$ (1810.05346v2)
Published 12 Oct 2018 in math.NT
Abstract: Let $h\geq 2$ be a positive integer. For any subset $\mathcal{A}\subset \mathbb{Z}n$, let $h{\wedge}\mathcal{A}$ be the set of the elements of $\mathbb{Z}_n$ which are sums of $h$ distinct elements of $\mathcal{A}$. In this paper, we obtain some new results on $4{\wedge}\mathcal{A}$ and $5{\wedge}\mathcal{A}$. For example, we show that if $|\mathcal{A}|\geq 0.4045n$ and $n$ is odd, then $4{\wedge}\mathcal{A}=\mathbb{Z}{n}$; Under some conditions, if $n$ is even and $|\mathcal{A}|$ is close to $n/4$, then $4{\wedge}\mathcal{A}=\mathbb{Z}_{n}$.