Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fully Time-domain Neural Model for Subband-based Speech Synthesizer (1810.05319v2)

Published 12 Oct 2018 in eess.AS, cs.LG, and cs.SD

Abstract: This paper introduces a deep neural network model for subband-based speech synthesizer. The model benefits from the short bandwidth of the subband signals to reduce the complexity of the time-domain speech generator. We employed the multi-level wavelet analysis/synthesis to decompose/reconstruct the signal into subbands in time domain. Inspired from the WaveNet, a convolutional neural network (CNN) model predicts subband speech signals fully in time domain. Due to the short bandwidth of the subbands, a simple network architecture is enough to train the simple patterns of the subbands accurately. In the ground truth experiments with teacher-forcing, the subband synthesizer outperforms the fullband model significantly in terms of both subjective and objective measures. In addition, by conditioning the model on the phoneme sequence using a pronunciation dictionary, we have achieved the fully time-domain neural model for subband-based text-to-speech (TTS) synthesizer, which is nearly end-to-end. The generated speech of the subband TTS shows comparable quality as the fullband one with a slighter network architecture for each subband.

Citations (1)

Summary

We haven't generated a summary for this paper yet.