Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinitesimal unitary Hopf algebras and planar rooted forests (1810.05314v1)

Published 12 Oct 2018 in math.RA

Abstract: Infinitesimal bialgebras were introduced by Joni and Rota. An infinitesimal bialgebra is at the same time an algebra and coalgebra, in such a way that the comultiplication is a derivation. Twenty years after Joni and Rota, Aguiar introduced the concept of an infinitesimal (non-unitary) Hopf algebra. In this paper we study infinitesimal unitary bialgebras and infinitesimal unitary Hopf algebras, in contrary to Aguiar's approach. Using an infinitesimal version of the Hochschild 1-cocycle condition, we prove respectively that a class of decorated planar rooted forests is the free cocycle infinitesimal unitary bialgebra and free cocycle infinitesimal unitary Hopf algebra on a set. As an application, we obtain that the planar rooted forests is the free cocycle infinitesimal unitary Hopf algebra on the empty set.

Summary

We haven't generated a summary for this paper yet.