Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Faulted Line Localization and PMU Placement in Power Systems through Convolutional Neural Networks (1810.05247v2)

Published 11 Oct 2018 in cs.SY, cs.LG, and stat.ML

Abstract: Diverse fault types, fast re-closures, and complicated transient states after a fault event make real-time fault location in power grids challenging. Existing localization techniques in this area rely on simplistic assumptions, such as static loads, or require much higher sampling rates or total measurement availability. This paper proposes a faulted line localization method based on a Convolutional Neural Network (CNN) classifier using bus voltages. Unlike prior data-driven methods, the proposed classifier is based on features with physical interpretations that improve the robustness of the location performance. The accuracy of our CNN based localization tool is demonstrably superior to other machine learning classifiers in the literature. To further improve the location performance, a joint phasor measurement units (PMU) placement strategy is proposed and validated against other methods. A significant aspect of our methodology is that under very low observability (7% of buses), the algorithm is still able to localize the faulted line to a small neighborhood with high probability. The performance of our scheme is validated through simulations of faults of various types in the IEEE 39-bus and 68-bus power systems under varying uncertain conditions, system observability, and measurement quality.

Citations (4)

Summary

We haven't generated a summary for this paper yet.