Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MeshAdv: Adversarial Meshes for Visual Recognition (1810.05206v2)

Published 11 Oct 2018 in cs.CR, cs.CV, cs.LG, and stat.ML

Abstract: Highly expressive models such as deep neural networks (DNNs) have been widely applied to various applications. However, recent studies show that DNNs are vulnerable to adversarial examples, which are carefully crafted inputs aiming to mislead the predictions. Currently, the majority of these studies have focused on perturbation added to image pixels, while such manipulation is not physically realistic. Some works have tried to overcome this limitation by attaching printable 2D patches or painting patterns onto surfaces, but can be potentially defended because 3D shape features are intact. In this paper, we propose meshAdv to generate "adversarial 3D meshes" from objects that have rich shape features but minimal textural variation. To manipulate the shape or texture of the objects, we make use of a differentiable renderer to compute accurate shading on the shape and propagate the gradient. Extensive experiments show that the generated 3D meshes are effective in attacking both classifiers and object detectors. We evaluate the attack under different viewpoints. In addition, we design a pipeline to perform black-box attack on a photorealistic renderer with unknown rendering parameters.

Citations (25)

Summary

We haven't generated a summary for this paper yet.