Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Comparative Study of Consistent Snapshot Algorithms for Main-Memory Database Systems (1810.04915v1)

Published 11 Oct 2018 in cs.DB

Abstract: In-memory databases (IMDBs) are gaining increasing popularity in big data applications, where clients commit updates intensively. Specifically, it is necessary for IMDBs to have efficient snapshot performance to support certain special applications (e.g., consistent checkpoint, HTAP). Formally, the in-memory consistent snapshot problem refers to taking an in-memory consistent time-in-point snapshot with the constraints that 1) clients can read the latest data items and 2) any data item in the snapshot should not be overwritten. Various snapshot algorithms have been proposed in academia to trade off throughput and latency, but industrial IMDBs such as Redis adhere to the simple fork algorithm. To understand this phenomenon, we conduct comprehensive performance evaluations on mainstream snapshot algorithms. Surprisingly, we observe that the simple fork algorithm indeed outperforms the state-of-the-arts in update-intensive workload scenarios. On this basis, we identify the drawbacks of existing research and propose two lightweight improvements. Extensive evaluations on synthetic data and Redis show that our lightweight improvements yield better performance than fork, the current industrial standard, and the representative snapshot algorithms from academia. Finally, we have opensourced the implementation of all the above snapshot algorithms so that practitioners are able to benchmark the performance of each algorithm and select proper methods for different application scenarios.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.