Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Framework for Telescope Schedulers: With Applications to the Large Synoptic Survey Telescope (1810.04815v1)

Published 11 Oct 2018 in astro-ph.IM

Abstract: How ground-based telescopes schedule their observations in response to competing science priorities and constraints, variations in the weather, and the visibility of a particular part of the sky can significantly impact their efficiency. In this paper we introduce the Feature-Based telescope scheduler that is an automated, proposal-free decision making algorithm that offers \textit{controllability} of the behavior, \textit{adjustability} of the mission, and quick \textit{recoverability} from interruptions for large ground-based telescopes. By framing this scheduler in the context of a coherent mathematical model the functionality and performance of the algorithm is simple to interpret and adapt to a broad range of astronomical applications. This paper presents a generic version of the Feature-Based scheduler, with minimal manual tailoring, to demonstrate its potential and flexibility as a foundation for large ground-based telescope schedulers which can later be adjusted for other instruments. In addition, a modified version of the Feature-Based scheduler for the Large Synoptic Survey Telescope (LSST) is introduced and compared to previous LSST scheduler simulations.

Summary

We haven't generated a summary for this paper yet.