Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistent 1-Cycles: Definition, Computation, and Its Application (1810.04807v2)

Published 11 Oct 2018 in cs.CG and math.AT

Abstract: Persistence diagrams, which summarize the birth and death of homological features extracted from data, are employed as stable signatures for applications in image analysis and other areas. Besides simply considering the multiset of intervals included in a persistence diagram, some applications need to find representative cycles for the intervals. In this paper, we address the problem of computing these representative cycles, termed as persistent 1-cycles, for $\text{H}_1$-persistent homology with $\mathbb{Z}_2$ coefficients. The definition of persistent cycles is based on the interval module decomposition of persistence modules, which reveals the structure of persistent homology. After showing that the computation of the optimal persistent 1-cycles is NP-hard, we propose an alternative set of meaningful persistent 1-cycles that can be computed with an efficient polynomial time algorithm. We also inspect the stability issues of the optimal persistent 1-cycles and the persistent 1-cycles computed by our algorithm with the observation that the perturbations of both cannot be properly bounded. We design a software which applies our algorithm to various datasets. Experiments on 3D point clouds, mineral structures, and images show the effectiveness of our algorithm in practice.

Citations (23)

Summary

We haven't generated a summary for this paper yet.