Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On maxima of stationary fields (1810.04496v3)

Published 10 Oct 2018 in math.PR

Abstract: Let ${X_{\mathbf{n}} : \mathbf{n}\in\mathbb{Z}d}$ be a weakly dependent stationary field with maxima $M_{A} := \sup{X_{\mathbf{i}} : \mathbf{i}\in A}$ for finite $A\subset\mathbb{Z}d$ and $M_{\mathbf{n}} := \sup{X_{\mathbf{i}} : \mathbf{1} \leq \mathbf{i} \leq \mathbf{n} }$ for $\mathbf{n}\in\mathbb{N}d$. In a general setting we prove that $P(M_{(n,n,\ldots, n)} \leq v_n) = \exp(- nd P(X_{\mathbf{0}} > v_n , M_{A_n} \leq v_n)) + o(1)$, for some increasing sequence of sets $A_n$ of size $ o(nd)$. For a class of fields satisfying a local mixing condition, including $m$-dependent ones, the theorem holds with a constant finite $A$ replacing $A_n$. The above results lead to new formulas for the extremal index for random fields.

Summary

We haven't generated a summary for this paper yet.