Contact discontinuities for 2-D inviscid compressible flows in infinitely long nozzles
Abstract: We prove the existence of a subsonic weak solution $({\bf u}, \rho, p)$ to steady Euler system in a two-dimensional infinitely long nozzle when prescribing the value of the entropy $(= \frac{p}{\rho{\gamma}})$ at the entrance by a piecewise $C2$ function with a discontinuity at a point. Due to the variable entropy condition with a discontinuity at the entrance, the corresponding solution has a nonzero vorticity and contains a contact discontinuity $x_2=g_D(x_1)$. We construct such a solution via Helmholtz decomposition. The key step is to decompose the Rankine-Hugoniot conditions on the contact discontinuity via Helmholtz decomposition so that the compactness of approximated solutions can be achieved. Then we apply the method of iteration to obtain a piecewise smooth subsonic flow with a contact discontinuity and nonzero vorticity. We also analyze the asymptotic behavior of the solution at far field.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.