2000 character limit reached
Towards geometric Satake correspondence for Kac-Moody algebras -- Cherkis bow varieties and affine Lie algebras of type $A$ (1810.04293v2)
Published 9 Oct 2018 in math.RT, hep-th, math-ph, math.MP, and math.QA
Abstract: We give a provisional construction of the Kac-Moody Lie algebra module structure on the hyperbolic restriction of the intersection cohomology complex of the Coulomb branch of a framed quiver gauge theory, as a refinement of the conjectural geometric Satake correspondence for Kac-Moody algebras proposed in an earlier paper with Braverman, Finkelberg in 2019. This construction assumes several geometric properties of the Coulomb branch under the torus action. These properties are checked in affine type A, via the identification of the Coulomb branch with a Cherkis bow variety established in a joint work with Takayama.