Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Convergence Analysis of the Fast Subspace Descent Methods for Convex Optimization Problems (1810.04116v2)

Published 9 Oct 2018 in math.NA and cs.NA

Abstract: The full approximation storage (FAS) scheme is a widely used multigrid method for nonlinear problems. In this paper, a new framework to design and analyze FAS-like schemes for convex optimization problems is developed. The new method, the Fast Subspace Descent (FASD) scheme, which generalizes classical FAS, can be recast as an inexact version of nonlinear multigrid methods based on space decomposition and subspace correction. The local problem in each subspace can be simplified to be linear and one gradient descent iteration (with an appropriate step size) is enough to ensure a global linear (geometric) convergence of FASD.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.